APPLIED MATHEM	ATICS	Course Code : 312301				
Programme Name/s	: Architecture Assistantship/ Automobile Engineering./ Agricultural Engineering/ Artificial Intelligence and Machine Learning/ Automat Cloud Computing and Big Data/ Civil Engineering/ Chemical Engineering/ Computer T Engineering/ Civil & Rural Engineering/ Construction Technology/ Engineering/ Digital Electronics/ Data Sciences/ Electrical Engineering/ Electronics & Te Electrical and Electronics Engineering/ Electrical Power System/ Electronics & Communicatio Engineering/ Computer Hardware & Maintenance/ Instrumentation & Control/ Industrial Electronics/ Inf Science & Information Technology/ Instrumentation/ Interior Design & Decoration/ Interior Engineering/ Mechanical Engineering/ Mechatronics/ Medical Electronics	tion and Robotics/ Architecture/ Cechnology/ Computer Computer Science & Cele-communication Engg./ On Engg./ Electronics Formation Technology/ Computer or Design/ Civil & Environmental				
Programme Code	: AA/ AE/ AI/ AL/ AN/ AO/ AT/ BD/ CE/ CH/ CM/ CO/ EJ/ EK/ EP/ ET/ EX/ HA/ IC/ IE/ IF/ IH/ IS/ IX/ IZ/ LI SE/ TE					
Semester	: Second					
Course Title	: APPLIED MATHEMATICS					
Course Code	: 312301					

I. RATIONALE

An Applied Mathematics course, covering integration, definite integration, differential equations, numerical methods, and probability distribution, equips engineering students with essential problem-solving tools. It enables them to model and analyze complex systems, make informed decisions and address real-world engineering challenges effectively.

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

Engineers applying Mathematics should proficiently solve complex real-world problems, enhancing decisionmaking, design and innovation with precision and efficiency.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 Solve the broad-based engineering problems of integration using suitable methods.
- CO2 Use definite integration to solve given engineering related problems.
- CO3 Apply the concept of differential equation to find the solutions of given engineering problems.
- CO4 Employ numerical methods to solve programme specific problems.
- CO5 Use probability distributions to solve elementary engineering problems.

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

				L	ear	ning	g Sche	eme					A	ssess	ment	Sche	eme																
Course			Course	Co Hra	ctu onta s./W	ict			C l'te	Theory		u dite D				Theory		Theory		ĩ		ĩ		l l		Theory		Based on LL & TL		&	Based on SL		
Code	Course Title	Abbr	Course Category/s				SLH	NLH	Credits	Paper Duration						Prac	tical				Total Marks												
				CL						Duration	FA-	SA- TH	To	tal	FA-	PR	SA-	PR	SI		1 11 11 K5												
											Max	Max	Max	Min	Max	Min	Max	Min	Max	Min													
312301	APPLIED MATHEMATICS	AMS	AEC	3	1	-	-	4	2	3	30	70	100	40	-	-	-	-	-	-	100												

15-01-2025 12:49:45 PM

Course Code : 312301

APPLIED MATHEMATICS

Total IKS Hrs for Sem. : 2 Hrs

Abbreviations: CL- ClassRoom Learning , TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\$ Internal Online Examination

Note :

- 1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
- 2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
- 3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
- 4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks
- 5. 1 credit is equivalent to 30 Notional hrs.
- 6. * Self learning hours shall not be reflected in the Time Table.
- 7. * Self learning includes micro project / assignment / other activities.

V.	THEORY LEARNING	OUTCOMES AND ALIGNED	COURSE CONTENT

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.	
1	 TLO 1.1 Solve the given simple problem(s) based on rules of integration. TLO 1.2 Evaluate the given simple integral(s) using substitution method. TLO 1.3 Integrate given simple functions using the integration by parts. TLO 1.4 Solve the given simple integral by partial fractions. 	 Unit - I Indefinite Integration 1.1 Simple Integration: Rules of integration and integration of standard functions 1.2 Integration by substitution. 1.3 Integration by parts. 1.4 Integration by partial fractions (only linear non repeated factors at denominator of proper fraction). 	Improved Lecture Demonstration Chalk-Board Presentations Video Demonstrations	
2	TLO 2.1 Solve given examples based on Definite Integration. TLO 2.2 Use properties of definite integration to solve given problems.	Unit - II Definite Integration 2.1 Definite Integration: Definition, rules of definite integration with simple examples. 2.2 Properties of definite integral (without proof) and simple examples.	Video Simulation Chalk-Board Improved Lecture Presentations	
3	 TLO 3.1 Find the order and degree of given differential equations. TLO 3.2 Form simple differential equation for given elementary engineering problems. TLO 3.3 Solve given differential equations using the methods of Variable separable and Exact Differential Equation(Introduce the concept of partial differential equation). TLO 3.4 Solve given Linear Differential Equation. 	Unit - III Differential Equation 3.1 Concept of Differential Equation. 3.2 Order, degree and formation of Differential equations 3.3 Methods of solving differential equations: Variable separable form, Exact Differential Equation, Linear Differential Equation.	Video Demonstrations Presentations Chalk-Board Improved Lecture Flipped Classroom	

APPL	APPLIED MATHEMATICS Course Code : 31									
Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.							
4	TLO 4.1 Find roots of algebraic equations by using appropriate methods. TLO 4.2 Solve the system of equations in three unknowns by iterative methods. TLO 4.3 Solve problems using Bakhshali iterative method for finding approximate square root. (IKS)	Unit - IV Numerical Methods 4.1 Solution of algebraic equations: Bisection method, Regula falsi method and Newton –Raphson method. 4.2 Solution of simultaneous equations containing three Unknowns by iterative methods: Gauss Seidal and Jacobi's method. 4.3 Bakhshali iterative method for finding approximate square root. (IKS)	Video SCILAB Spreadsheet Chalk-Board Flipped Classroom Presentations							
5	 TLO 5.1 Solve given problems based on repeated trials using Binomial distribution. TLO 5.2 Solve given problems when number of trials are large and probability is very small. TLO 5.3 Utilize the concept of normal distribution to solve related engineering problems. 	Unit - V Probability Distribution 5.1 Binomial distribution. 5.2 Poisson's distribution. 5.3 Normal distribution.	Video ORANGE Chalk-Board Improved Lecture Presentations							

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES.

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 1.1 Solve simple problems of Integration by substitution	1	*Integration by substitution	1	CO1
LLO 2.1 Solve integration using by parts	2	*Integration by parts	1	CO1
LLO 3.1 Solve integration by partial fractions(only linear non repeated factors at denominator of proper fraction).	3	Integration by partial fractions.	1	CO1
LLO 4.1 Solve examples on Definite Integral based on given methods.	4	Definite Integral based on given methods.	1	CO2
LLO 5.1 Solve problems on properties of definite integral.	5	*Properties of definite integral	1	CO2
LLO 6.1 Solve given problems for finding the area under the curve and volume of revolution.	6	* #Area under the curve and volume of revolution.(Only for Civil and Mechanical Engineering Group)	1	CO2
LLO 7.1 Solve examples on mean value and root mean square value.	7	* #Mean value and root mean square value. (Only for Computer, Electrical and Electronics Engineering Group)	1	CO2
LLO 8.1 Solve examples on order, degree and formation of differential equation.	8	Order, degree and formation of differential equation.	1	CO3
LLO 9.1 Solve first order first degree differential equation using variable separable method.	9	Variable separable method.	1	CO3
LLO 10.1 Solve first order first degree differential equation using exact differential equation and linear differential equation.	10	*Exact differential equation and linear differential equation.	1	CO3

APPLIED MATHEMATICS		С	ourse Cod	e:312301
Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 11.1 Solve engineering application problems using differential equation.	11	*Applications of differential equations.(Take programme specific problems)	1	CO3
LLO 12.1 Solve problems on Bisection method and Regula falsi method.	12	*Bisection method and Regula falsi method.	1	CO4
LLO 13.1 Solve problems on Newton- Raphson method.	13	Newton- Raphson method.	1	CO4
LLO 14.1 Solve problems on Jacobi's method and Gauss Seidal Method.	14	Jacobi's method and Gauss Seidal Method.	1	CO4
LLO 15.1 Use Bakhshali iterative methods for finding approximate value of square root. (IKS)	15	*Bakhshali iterative methods for finding approximate value of square root. (IKS)	1	CO4
LLO 16.1 Solve engineering problems using Binomial distribution.	16	*Binomial Distribution	1	CO5
LLO 17.1 Solve engineering problems using Poisson distribution.	17	*Poisson Distribution	1	CO5
LLO 18.1 Solve engineering problems using Normal distribution.	18	Normal Distribution	1	CO5
LLO 19.1 Solve problems on Laplace transform and properties of Laplace transform.	19	* # Laplace transform and properties of Laplace transform.(Only for Electrical and Electronics Engineering Group)	1	CO2
LLO 20.1 Solve problems on Inverse Laplace transform and properties of Inverse Laplace transform.	20	* # Inverse Laplace transform and properties of Inverse Laplace transform.(Only for Electrical and Electronics Engineering Group)	1	CO2
Note : Out of above suggestive LLOs	-			

• '*' Marked Practicals (LLOs) Are mandatory.

• Minimum 80% of above list of lab experiment are to be performed.

• Judicial mix of LLOs are to be performed to achieve desired outcomes.

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING)

Micro project

• NA

Assignment

• NA

APPLIED MATHEMATICS

Note :

- Above is just a suggestive list of microprojects and assignments; faculty must prepare their own bank of microprojects, assignments, and activities in a similar way.
- The faculty must allocate judicial mix of tasks, considering the weaknesses and / strengths of the student in acquiring the desired skills.
- If a microproject is assigned, it is expected to be completed as a group activity.
- SLA marks shall be awarded as per the continuous assessment record.
- For courses with no SLA component the list of suggestive microprojects / assignments/ activities are optional, faculty may encourage students to perform these tasks for enhanced learning experiences.
- If the course does not have associated SLA component, above suggestive listings is applicable to Tutorials and maybe considered for FA-PR evaluations.

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
	Open-source software like wolfram alpha, SageMaths, MATHS3D, GeoGebra, Graph,	
1	DPLOT, and Graphing Calculator (Graph Eq2.13), ORANGE can be used for Algebra,	All
	Calculus, Trigonometry and Statistics respectively.	

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours	R-Level	U-Level	A-Level	Total Marks
1	Ι	Indefinite Integration	CO1	15	2	6	12	20
2	II	Definite Integration	CO2	8	2	4	6	12
3	III	Differential Equation	CO3	8	2	4	6	12
4	IV	Numerical Methods	CO4	6	2	4	8	14
5	V	Probability Distribution CO5		8	2	4	6	12
		Grand Total	45	10	22	38	70	

X. ASSESSMENT METHODOLOGIES/TOOLS

Formative assessment (Assessment for Learning)

• Tests

Summative Assessment (Assessment of Learning)

• End Term Exam

XI. SUGGESTED COS - POS MATRIX FORM

		Programme Specific Outcomes* (PSOs)								
(COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	Llevelonment	PO-4 Engineering Tools	Nociety	PO-6 Project Management		1	PSO- 2	PSO- 3
CO1	3	1	-	-	1	-	1			

APPLIED	MATHEM	ATICS					Course	Code : 312	2301			
CO2	3	1	-	-	1	-	1					
CO3	3	2	1	1	1	1	1					
CO4	2	3	2	2	1	1	1					
CO5	2	2	1	1	2	1	2					
	COS 2 2 1 1 2 1 2 Legends :- High:03, Medium:02,Low:01, No Mapping: - *PSOs are to be formulated at institute level											

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Sr.No	Author	Title	Publisher with ISBN Number		
1	Grewal B. S.	Higher Engineering Mathematics	Khanna publication New Delhi, 2013 ISBN: 8174091955		
2	Dutta. D	A text book of Engineering Mathematics	New age publication New Delhi, 2006 ISBN: 978- 81-224-1689-3		
3	Kreysizg, Ervin	Advance Engineering Mathematics	Wiley publication New Delhi 2016 ISBN: 978-81- 265-5423-2		
4	Das H.K.	Advance Engineering Mathematics	S Chand publication New Delhi 2008 ISBN: 9788121903455		
5	S. S. Sastry	Introductory Methods of Numerical Analysis	PHI Learning Private Limited, New Delhi. ISBN-978-81-203-4592-8		
6	C. S. Seshadri	Studies in the History of Indian Mathematics	Hindustan Book Agency (India) P 19 Green Park Extension New Delhi. ISBN 978-93- 80250-06-9		
7	Marvin L. Bittinger David J.Ellenbogen Scott A. Surgent	Calculus and Its Applications	Addison-Wesley 10th Edition ISBN-13: 978-0-321-69433-1		
8	Gareth James, Daniela Witten, Trevor Hastie Robert and Tibshirani	An Introduction to StatisticalLearning with Applications in R	Springer New York Heidelberg Dordrecht LondonISBN 978-1-4614-7137-0 ISBN 978-1-4614-7138-7 (eBook)		

XIII . LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description
1	http://nptel.ac.in/courses/106102064/1	Online Learning Initiatives by IITs and IISc
2	https://www.khanacademy.org/math? gclid=CNqHuabCys4CFdOJaddHo Pig	Concept of Mathematics through video lectures and notes
3	https://www.wolframalpha.com/	Solving mathematical problems, performing calculations, and visualizing mathematical concepts.
4	http://www.sosmath.com/	Free resources and tutorials
5	http://mathworld.wolfram.com/	Extensive math encyclopedia with detailed explanations of mathematical concepts
6	https://www.mathsisfun.com/	Explanations and interactive lessons covering various math topics, from basic arithmetic to advanced
7	http://tutorial.math.lamar.edu/	Comprehensive set of notes and tutorials covering a wide range of mathematics topics.
8	https://www.purplemath.com/	Purplemath is a great resource for students seeking help with algebra and other foundational mathematics to improve learning.
9	https://www.brilliant.org/	Interactive learning in Mathematics
10	https://www.edx.org/	Offers a variety of courses
11	https://www.coursera.org/	Coursera offers online courses in applied mathematics from universities and institutions around the globe.

APPLIED MATHEMATICS		Course Code : 312301
Sr.No	Link / Portal	Description
12	https://ocw.mit.edu/index.htm	The Massachusetts Institute of Technology (MIT) offers free access to course materials for a wide range of mathematical courses.
Note :		

• Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students

MSBTE Approval Dt. 01/10/2024

Semester - 2, K Scheme